Comparison on the Fatigue Crack Propagation of High‐Strength Aluminum Alloys

Author:

Gong BaiShan1ORCID,Zhang ZhenJun1,Duan QiQiang1,Wang HongWei1,Wang XueGang1,Liu HanZhong1,Cong FuGuan2,Purcek Gencaga3,Zhang ZheFeng1

Affiliation:

1. Shi-changxu Innovation Center for Advanced Materials Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 China

2. Sales Department of Aluminum Products Manufacturing Plant Northeast Light Alloy Co., Ltd. Harbin 150060 China

3. Department of Mechanical Engineering Karadeniz Technical University Trabzon 61080 Turkey

Abstract

To investigate the fatigue crack propagation (FCP) behaviors of high‐strength 7075 and 2024 Al alloys, FCP experiments are conducted for the two alloys at different aging states (underaged [UA], peak aging, and overaged). It is found that strength and plasticity are the main factors influencing the FCP. For 7075 Al alloy, the FCP curves almost coincide for the three aging states that have similar tensile properties. However, 2024 Al alloy shows the lowest FCP rate at the UA state which has the strongest strength–plasticity match among the three aging stages. Based on the low‐cycle‐fatigue damage model, the effect of strength–plasticity balance on FCP rate of the two Al alloys at different aging states is quantitatively analyzed. It is found that the larger the strength–plasticity balance of the alloy, the smaller the FCP rate under the same stress intensity factor. This study indicates that the FCP rate of high‐strength Al alloys is mainly influenced by the strength–plasticity balance due to the difference in the aging states.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3