Fabrication of TC4/TiCp New Hip Prosthesis by Laser Cladding

Author:

Niu Fangyong1ORCID,Zhang Kaijun1,Han Jun2,Xu Mingze1,Wang Jianhe2,Jiang Nizhou2,Ma Guangyi1,Wu Dongjiang1,Wang Hong3

Affiliation:

1. State Key Laboratory of High-Performance Precision Manufacturing Dalian University of Technology Dalian Liaoning 116024 P. R. China

2. School of Graduates Dalian Medical University No.9 West Section of South Lvshun Road Dalian City Liaoning Province 116044 China

3. Department of Orthopedics Dalian Municipal Central Hospital Affiliated of Dalian University of Technology No.826 Southwestern Road Shahekou District Dalian City Liaoning Province 116021 China

Abstract

Artificial hip prostheses are commonly utilized in total hip replacement surgeries. However, current single materials like metal, polyethylene, and ceramic do not satisfy the comprehensive performance requirements of prostheses, such as biocompatibility, wear resistance, and toughness. To address these limitations, a new metal–ceramic hip prosthesis which can be prepared by laser cladding technique is proposed. By combining the advantages of metal and ceramic, this prosthesis aims to overcome existing product limitations. A TiCp bioceramic coating is prepared on the TC4 surface, and its microstructure, mechanical properties, and biological characteristics are systematically analyzed. The results show that the TiCp phase is uniformly distributed in the coating. Additionally, dendritic TiCp at the bonding interface results in metallurgical bond between the coating and substrate. The α‐Ti phase in the matrix of the TiCp coating helps to enhance its fracture toughness and fatigue strength, while the solid solution of trace C elements in the matrix provides solid solution strengthening. Mechanical tests reveal that the microhardness of the TiCp coating is 2.5 times greater than that of the substrate, and the wear mass is reduced by 89.4%. Finally, the TiCp bioceramic coating is verified to be biocompatible, demonstrating excellent potential for use in hip prostheses.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3