Hierarchical Cellulose Superinsulation Membrane

Author:

Luigi Massimigliano Di1,Fu Yu2,Li Zheng1ORCID,Armstrong Jason N.1,Yao Fei2,Ren Shenqiang134ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA

2. Department of Materials Design and Innovation University at Buffalo The State University of New York Buffalo NY 14260 USA

3. Department of Chemistry University at Buffalo The State University of New York Buffalo NY 14260 USA

4. Research and Education in Energy, Environment & Water (RENEW) University at Buffalo The State University of New York Buffalo NY 14260 USA

Abstract

The environment‐friendly components coupled with the ability to mimic the simplicity and originality of nature necessitate advanced sustainable materials with structural capabilities for energy‐efficient applications. The use of feedstock deriving from plant‐based, renewable organic material to produce nanofibril that embodies enhanced insulating properties and high mechanical strength constitutes an efficient development strategy. Herein, a free‐standing, hierarchical superinsulation membrane by leveraging the principle of the bottom‐up method is reported. The electrospun cellulose nanofibrils/aerogel‐based core layer provides exceptional thermal properties with its thermal conductivity of 10.2 mW m−1K−1. The lightweight, flexible, and durable paper‐like membrane features a tensile strength of 11.3 MPa and a bending rigidity in the order of 4.6 cN mm−1. The hydrophobic superinsulation membrane material also exhibits a ΔT of ≈25 °C under continuous sunlight illumination and allows thermal runaway mitigation of rechargeable lithium‐ion batteries. All the aforementioned properties position this hybrid superinsulation membrane as a promising material for energy‐saving thermal management applications.

Funder

Building Technologies Office

Advanced Research Projects Agency - Energy

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3