Recent Advances in Hydrogel‐Based Soft Bioelectronics and its Convergence with Machine Learning

Author:

Lee Eun Seo1,Lee Min Young2,Kim Dae‐Hyeong3456ORCID,Koo Ja Hoon78ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering Sejong University Seoul 05006 Republic of Korea

2. Department of Electronics and Information Engineering Sejong University Seoul 05006 Republic of Korea

3. Center for Nanoparticle Research Institute for Basic Science Seoul 08826 Republic of Korea

4. School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University (SNU) Seoul 08826 Republic of Korea

5. Department of Materials Science and Engineering SNU Seoul 08826 Republic of Korea

6. Interdisciplinary Program for Bioengineering SNU Seoul 08826 Republic of Korea

7. Department of Semiconductor Systems Engineering Sejong University Seoul 05006 Republic of Korea

8. Institute of Semiconductor and System IC Sejong University Seoul 05006 Republic of Korea

Abstract

Recent advancements in artificial intelligence (AI) technologies, particularly machine learning (ML) techniques, have opened up a promising frontier in the development of intelligent soft bioelectronics, demonstrating unparalleled performance in interfacing with the human body. Hydrogels, owing to their unique combination of biocompatibility, tunable mechanical properties, and high water content, have emerged as a versatile platform for constructing soft bioelectronic devices. Functionalized hydrogels, such as conductive hydrogels, can efficiently capture biosignals from various target tissues while seamlessly forming conformal and reliable interfaces. They can also function as an intermediary layer between biological tissues and soft bioelectronics for diagnosis and therapy purposes. Meanwhile, ML has demonstrated its efficacy in processing extensive datasets collected from the bioelectronics. The convergence of hydrogel‐based soft bioelectronics and ML has unlocked a myriad of possibilities in unprecedented diagnostics, therapeutics, and beyond. In this review, the latest advances in hydrogel‐based soft bioelectronics are introduced. After briefly describing the materials and device strategies for high‐performance hydrogel bioelectronics, how ML can be integrated to augment the functionalities is discussed. Recent examples of ML‐integrated hydrogel bioelectronics are then discussed. Finally, the review is concluded by introducing future potential applications of AI in hydrogel‐based bioelectronics, alongside inherent challenges in this interdisciplinary domain.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3