Formation of Highly Robust Superhydrophobic Nanocomposite Coatings via Dual Spraying Technique

Author:

Liu Ruidi12,Li Ke12,Ma Jun12,Wang Qiang12,Wu Binrui123ORCID,Yi Xian12ORCID

Affiliation:

1. Key Laboratory of Icing and Anti‐/de‐icing China Aerodynamics Research and Development Center Mianyang 621000 P.R. China

2. Low Speed Aerodynamics Institute China Aerodynamics Research and Development Center Mianyang 621000 P.R. China

3. State Key Laboratory of NBC Protection for Civilian Beijing 102205 P.R. China

Abstract

The development of materials that repel water, known as superhydrophobic materials, has been hindered by their vulnerability to mechanical abrasion. This issue is particularly pronounced for superhydrophobic nanocomposite coatings fabricated using a simple blend of resin and nanoparticles (NPs) through uncomplicated methods such as spraying or brushing, where an excessive amount of NPs can deteriorate the mechanical property. Moreover, the limitation of thickness puts forward a request for a high retention rate of the coatings. In response to these challenges, this study presents an innovative approach aimed at enhancing the robustness of superhydrophobic nanocomposite coatings through the utilization of a straightforward dual spraying technique. The results demonstrate that the particles with hierarchical micro/nanostructures fabricated by the primary spraying process provide abundant roughness feedstocks for the secondary‐sprayed coatings, in which superhydrophobicity properties can be achieved with less NP content. Additionally, the mechanical durability of the coatings can be reinforced by the addition of appropriate amounts of aluminum oxide (Al2O3) NPs and the continuous‐distributed particles fabricated by the primary‐spraying process, exhibiting a longer abrasion distance and a higher retention rate. Also, the prepared sample shows comprehensive robustness in adhesion, abrasion, and dynamic impact tests. By offering insights into material selection and process optimization, this study paves the way for creating resilient superhydrophobic coatings using a streamlined and convenient approach.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3