Micropore Evolution and Damage Behavior of Rapid‐Solidified Al–Zn–Mg–Cu Alloy during Hot Plastic Forming

Author:

Zhao Yan1,Zhang Zhen1,Hou Lin1,Cong Hailong1,Li Haichao1ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai University of Engineering Science Shanghai 201620 China

Abstract

Rapid‐solidified Al–Zn–Mg–Cu alloys possess widespread application prospects owing to their excellent properties, particularly high specific strength. Nevertheless, their further development for use as advanced structural parts is significantly limited by their intrinsic porosity. Herein, the flow stress subroutine and micropore evolution model are combined to predict the cracking and damage behavior of a rapidly solidified Al–Zn–Mg–Cu disk‐shaped part during hot forging. The results reveal that the damage to the part during plastic forming is inversely proportional to the relative density. Reasonable matching between the height‐to‐diameter ratio (H/D) and the initial relative density is the key factor in avoiding cracking and damage to the part. The closure sequence of the micropores is from the center to the outside of the billet. A billet with an H/D of 1 and initial relative density of 0.95 can reach full density after forming, and a damage‐free part can be obtained. These simulation results are verified by analyzing the microstructural characteristics and mechanical properties of the actual forged part.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3