Affiliation:
1. Faculty of Engineering Department of Bioengineering Bilecik Seyh Edebali University Bilecik 11100 Turkey
2. Faculty of Engineering Department of Mechanical Engineering Bilecik Seyh Edebali University Bilecik 11100 Turkey
3. Faculty of Engineering and Architecture Department of Mechanical Engineering Uludağ University Görükle-Bursa 16059 Turkey
Abstract
Conventional processes are performed to improve the low hardness and low wear resistance properties of 316L steel, but these processes generally decrease the corrosion resistance. Electroless nickel alloy coatings provide a hard, wear‐resistant, and corrosion‐resistant surface. Thus, the present study aims to investigate the wear, corrosion, and tribocorrosion behaviors of monolayer and duplex coatings with nickel–boron (Ni–B) and nickel–phospore (Ni–P) on 316L steel in comparison with 316L steel in dry sliding and 0.9 wt% NaCl solution environments. It is determined that the coatings have a mixture of crystal and amorphous structures, the interfaces on the 316L are uniform, and the compatibility between the layers is good. The Ni–B, Ni–P/Ni–B, and Ni–B/Ni–P coatings are 2.3, 2.06, and 1.6 times as hard as the 316L, respectively. The wear rates of Ni–B, Ni–P/Ni–B, and Ni–B/Ni–P coatings show decrease by 99.3%, 92.5%, and 99.1% in the dry‐sliding condition and by 98.5%, 30.1%, and 19.1% in the tribocorrosion condition compared with that of 316L, respectively. It is observed that the monolayer Ni–B coating exhibits superior hardness, a higher contact angle, low electrical conductivity, and better tribological performance in both dry sliding and tribocorrosion conditions compared to the 316L and duplex coatings.
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献