Additive Manufacturing of Flexible Strain Sensors Based on Smart Composites for Structural Health Monitoring with High Accuracy and Fidelity

Author:

Ahmed Sheraz1,Bodaghi Mahdi2ORCID,Nauman Saad1,Muhammad Khan Zaffar34

Affiliation:

1. Department of Materials Science & Engineering Institute of Space Technology Islamabad 44000 Pakistan

2. Department of Engineering School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK

3. Department of Aeronautics & Astronautics Institute of Space Technology Islamabad 44000 Pakistan

4. Department of Mechanical Engineering University of Technology Nowshera Pakistan

Abstract

This research introduces a novel flexible spherical carbon nanoparticle‐based polyurethane conductive ink, which is employed to fabricate strain sensors by a lab‐developed direct ink writing/3D printing system. Rheological tests are performed, and sensors are pasted on glass fiber‐reinforced plastic specimens to study strain gauge behaviors under quasistatic loading. The gauge factor in tensile loading is found to be layer width dependent as decreasing the strain gauge's layer width increases the sensitivity of the strain sensor. A maximum gauge factor of 34 is achieved using a layer width of 0.2 mm, 17 times greater than commercially available metal foil strain gauges. The four‐point bend tests are performed under tension/compression to assess the sensor's strain‐sensing and damage‐monitoring ability. Fractographic analysis is coupled with strain monitoring using the developed sensor, which confirms that the failure progresses from intralaminar failure modes such as ply splitting in tension. At the same time, delamination leads to kink band formation under compression and the eventual failure of load‐bearing fibers. The developed sensor exhibits repeatable performance with low hysteresis and integrated nonlinearity errors for up to 1000 cycles. The developed sensors could be effectively employed for online in situ structural health monitoring of aerospace structures under static and dynamic loading.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3