High‐Throughput Study of the Phase Constitution of the Thin Film System Mg–Mn–Al–O

Author:

Lourens Florian1ORCID,Suhr Ellen1,Schnickmann Alena2,Schirmer Thomas2ORCID,Ludwig Alfred13ORCID

Affiliation:

1. Materials Discovery and Interfaces Institute for Materials Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany

2. Department of Mineralogy, Geochemistry, Salt Deposits, Institute of Disposal Research Clausthal University of Technology Adolph‐Roemer‐Str. 2A 38678 Clausthal‐Zellerfeld Germany

3. Center for Interface‐Dominated High Performance Materials Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany

Abstract

The increasing importance of recycling makes the recovery of valuable elements from slags interesting. The concept of engineered artificial minerals aims at the formation of phase(s) with a high content of the to‐be‐recovered element(s) from slags of pyrometallurgical recycling processes. For this, understanding the phase constitution of the slag systems, such as the spinel‐forming subsystem Mg–Mn–Al–O from Li‐ion battery recycling, is of great importance. Herein, the phase constitution is investigated using a thin film materials library (ML) that covers the composition space (Mg14−69Mn11−38Al14−74)Ox. High‐throughput energy‐dispersive X‐ray spectroscopy and X‐ray diffraction confirm the formation of the spinel solid solution phase for a wide composition space. The Mn oxidation state is shown to be a mixture of Mn2+ and Mn3+ by analyzing Mn 2p3/2 spectra from X‐ray photoelectron spectroscopy. For one measurement area of the ML containing equal atomic amounts of Mg, Mn, and Al, transmission electron microscopy shows columnar spinel grains with Mg, Mn, and Al evenly distributed. Based on these results, it is suggested that the high likelihood of spinel formation in slags can be influenced by controlling the Mn oxidation state to allow the formation of desirable engineered artificial minerals for Li recovery.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3