Intermitted 3D Diffraction Tomography Combined with In situ Laue Diffraction to Characterize Dislocation Structures and Stress Fields in Microbending Cantilevers

Author:

Molin Jean‐Baptiste1,Renversade Loic2,Micha Jean‐Sebastien2,Ulrich Olivier2,Robach Odile2,Gruber Patric A.1,Kirchlechner Christoph1ORCID

Affiliation:

1. Institute for Applied Materials Karlsruhe Institute of Technology P.O. Box 3640 76021 Karlsruhe Germany

2. Université Grenoble Alpes, CEA‐Grenoble/Institut de Recherche Interdisciplinaire de Grenoble (IRIG) Grenoble 38000 France

Abstract

The mechanisms of plastic deformation are investigated using different characterization tools as scanning electron microscopy (SEM), transmission electron microscopy, or synchrotron‐based X‐ray techniques like Laue microdiffraction (μLaue). However, structural information can be limited to the specimen surface (SEM), to extremely thin samples (TEM), or depth averaging (μLaue). Until today, a nondestructive in situ investigation of a dislocation population, and de facto, the determination of the local stress tensor in bulk samples, remain challenging. To decompose the depth‐integrated μLaue signals, the so‐called “differential aperture X‐ray microscopy” (DAXM), allowing the 3D determination of the local structural crystal properties, is used. Using this approach, the local crystallographic phase, orientation, and the elastic strain tensor are obtained with 1 μm3 voxel size. In order to accomplish the experiment, a protocol and a new combined in situ mechanical testing rig with a DAXM microscope is created. The experiment is conducted on a severely bent focused ion beam copper single‐crystal microcantilever (10 × 10 × 25 μm3). The local deviatoric strain tensor and the local lattice curvature in the deformed sample are analyzed in 3D. The advantages and resolution limits of the technique are discussed in detail.

Funder

Deutsche Forschungsgemeinschaft

European Synchrotron Radiation Facility

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3