Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfxTa1−x)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering

Author:

Thor Nathalie1ORCID,Winkens Georg2,Bernauer Jan3,Petry Nils‐Christian4,Beck Katharina4,Wang Jin5,Schwaiger Ruth56,Riedel Ralf3,Kolb Ute17,Lepple Maren8,Pundt Astrid2

Affiliation:

1. Institute of Applied Geoscience Technical University Darmstadt Schnittspahnstraße 9 D‐64287 Darmstadt Germany

2. Institute for Applied Materials (IAM) Karlsruhe Institut für Technologie (KIT) Engelbert‐Arnold‐Straße 4 D‐76131 Karlsruhe Germany

3. Institute of Materials Science Technical University Darmstadt Otto‐Berndt‐Straße 3 D‐64287 Darmstadt Germany

4. Materials and Corrosion DECHEMA Research Institute Theodor‐Heuss‐Allee 25 D‐60486 Frankfurt am Main Germany

5. Institute of Energy and Climate Research (IEK) Forschungszentrum Jülich GmbH Wilhelm‐Johnen Straße D‐52428 Jülich Germany

6. Chair of Energy Engineering Materials RWTH Aachen University D‐52056 Aachen Germany

7. Centre for High Resolution Electron Microscopy (EMC-M) Johannes Gutenberg University Mainz Duesbergweg 10‐14 55128 Mainz Germany

8. Department of Inorganic and Analytical Chemistry Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 17 D‐35392 Giessen Germany

Abstract

The high‐temperature microstructural evolution and mechanical properties of two SiC‐based polymer‐derived ceramics with different Hf:Ta molar ratios are investigated using electron microscopy techniques and manipulated by nanoindentation. The as‐pyrolyzed ceramic powder consists of an amorphous Si(HfxTa1−x)C(N,O) structure (where x = 0.2, 0.7) with localized nanocrystalline transition metal carbides (TMCs). Subsequent application of the field‐assisted sintering technique (FAST) for high‐temperature consolidation results in a crystalline (HfxTa1−x)C/SiC ultra‐high temperature ceramic nanocomposite. The microstructure contains powder particle‐sized grains and sinter necks between the former powder particles. The powder particles consist of a β‐SiC matrix and small TMCs. Large TMCs are observed on the internal surfaces of former powder particles. This is due to the pulsed direct current and the resulting Joule heating that facilitates diffusion as well as oxygen impurities. Sinter necks of large β‐SiC grains form during the FAST process. The microstructural regions are assessed using high‐throughput nanoindentation. The hardness for SiC/(Hf0.7Ta0.3)C is measured on the formed grains and the sinter necks giving mean hardness values of about 27 and 37 GPa, respectively.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3