Interfacial Interactions in Particle‐Induced Abnormal Grain Growth

Author:

Bhuiyan Mohammad Nabil12ORCID,Frame Lesley D.2,Mushongera Leslie T.1ORCID

Affiliation:

1. Department of Chemical & Materials Engineering University of Nevada, Reno Reno NV 89557 USA

2. Department of Materials Science & Engineering University of Connecticut Storrs CT 06269 USA

Abstract

The presence of secondary particles to polycrystalline alloys results in kinetic stabilization of the grain boundaries, which maintains desirable fine microstructures. In some instances, secondary particles trigger abnormal grain growth. The mechanisms influencing abnormal grain growth are still a subject of conjecture. As dispersed fine particles can contribute to abnormal grain growth, it is necessary to clarify the governing mechanism by which this occurs. The current work employs a multiphase field modeling approach to shed light onto abnormal grain growth. Particular attention is placed on understanding the role of grain boundary–particle interactions on abnormal grain growth. The results show that, in the presence of particles, normal grain growth occurs until a pinned state is achieved. In the pinned state, some grains overcome the pinning pressure exerted by some particles by piercing through the particles, which results in abnormal grain growth. The piercing events appear to be entirely random and not related to the size of the interacting particles. None‐the‐less, a bimodal particle size distribution is observed to lead to abnormal grain growth. A pinning parameter is introduced as a metric to identify the transition from normal to abnormal grain growth.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3