Affiliation:
1. Plasma Forming Laboratory Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler Street Miami FL 33174 USA
Abstract
Recent advancements have shown great promise in utilizing wire‐fed direct energy deposition (DED) for building aluminum alloy structures. However, utilizing the wire‐fed DED approach for fabricating metal matrix composite structures remains a significant challenge. Herein, a wire‐based additive manufacturing process is used to successfully produce a 1D boron nitride nanotube (BNNT)‐reinforced aluminum composite with high strength. Al‐BNNT electrode is developed in house. The microstructural changes that occur during layer‐by‐layer deposition are investigated. The grain morphology changes from equiaxed grains in the bottom layer to columnar grains in the top layer. BNNTs act as nuclei to promote the formation of equiaxed grains and interfacial compounds (AlN and AlB2) during solidification. This results in improved strength, with Al‐BNNT composite exhibiting a tensile strength of 47 MPa, 2.3 times higher than its pure Al. Higher strength is attributed to the retention and uniform distribution of BNNT reinforcement in the melt pool, leading to effective load transfer. This study demonstrates the potential of additive manufacturing for producing high‐performance metal matrix composites with novel 1D reinforcements and improved multifunctional properties.
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献