VoroNoodles: Topological Interlocking with Helical Layered 2‐Honeycombs

Author:

Ebert Matthew1,Akleman Ergun23,Krishnamurthy Vinayak13,Kulagin Roman4,Estrin Yuri56ORCID

Affiliation:

1. J. Mike Walker ’66 Department of Mechanical Engineering Texas A&M University 100 Mechanical Engineering Office Building College Station TX 77843 USA

2. Visual Computing and Computational Media Texas A&M University 798 Ross Street College Station TX 77843 USA

3. Department of Computer Science (By Affiliation) Texas A&M University 435 Nagle Street College Station TX 77843 USA

4. Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

5. Department of Materials Science and Engineering Monash University Clayton VIC 3800 Australia

6. Department of Mechanical Engineering The University of Western Australia Crawley 6009 Australia

Abstract

An approach for modeling topologically interlocked building blocks that can be assembled in a water‐tight manner (space filling) to design a variety of spatial structures is introduced. This approach takes inspiration from recent methods utilizing Voronoi tessellation of spatial domains using symmetrically arranged Voronoi sites. Attention is focused on building blocks that result from helical stacking of planar 2‐honeycombs (i.e., tessellations of the plane with a single prototile) generated through a combination of wallpaper symmetries and Voronoi tessellation. This unique combination gives rise to structures that are both space‐filling (due to Voronoi tessellation) and interlocking (due to helical trajectories). Algorithms are developed to generate two different varieties of helical building blocks, namely, corrugated and smooth. These varieties result naturally from the method of discretization and shape generation and lead to distinct interlocking behavior. In order to study these varieties, finite‐element analyses (FEA) are conducted on different tiles parametrized by 1) the polygonal unit cell determined by the wallpaper symmetry and 2) the parameters of the helical line generating the Voronoi tessellation. Analyses reveal that the new design of the geometry of the building blocks enables strong variation of the engagement force between the blocks.

Funder

National Science Foundation

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3