Functionalized Microwires‐Based Bundle Electrodes for Detection of Multiplexed Metabolites in Interstitial Space

Author:

Huang Shuang12,Yao Chuanjie2,He Mengyi2,Huang Xinshuo2,Liu Zhengjie2,Chen Jiayi2,Jiang Lelun1,Chen Hui‐jiuan2,Xie Xi12ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Sun Yat‐Sen University Shenzhen 518107 China

2. State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Guangdong Province Key Laboratory of Display Material and Technology Sun Yat‐Sen University Guangzhou 510006 China

Abstract

Metabolic substances play a pivotal role in maintaining the body's regular physiological functions. When these processes are disrupted, it can lead to metabolic disorders which may cause severe damage to various organs. Diabetes mellitus, a prevalent metabolic disorder, arises from disturbances in sugar metabolism among other substances. Consequently, there's a pressing need to monitor metabolite levels for early diagnosis. To address this, in this study, a semi‐implantable metabolite sensing system developed around functionalized microwires‐based bundle electrodes (FMBE) is introduced. This FMBE device tracks glucose, hydrogen peroxide (H2O2), and uric acid (UA) levels in vivo in real time, sensitively, and continuously. The FMBE is coated with Au nanoclusters and carbon nanotube–2D carbides and nitride (MXene) nanocomposites to enhance sensing surface area. In vitro characterizations affirm the FMBE's linear responsivity, detection sensitivity, and selectivity toward glucose, H2O2, and UA sensing. In addition, in in vivo testing in healthy and diabetic rats, it is demonstrated that FMBE is able to continuously monitor interstitial glucose, H2O2, and UA concentrations after implantation. The FMBE system, thus, stands out as a promising platform for real‐time, in situ monitoring of metabolite concentrations, potentially assisting in the diagnosis of diabetes and associated complications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3