On the Reliability of Automated Analysis of Fracture Surfaces Using a Novel Computer Vision‐Based Tool

Author:

Engelhardt Anna1ORCID,Decke Jens2ORCID,Meier David234,Dulig Franz2,Ragunathan Rishan2,Wegener Thomas1ORCID,Sick Bernhard2ORCID,Niendorf Thomas1ORCID

Affiliation:

1. Institute of Materials Engineering Metallic Materials University of Kassel Kassel 34125 Germany

2. Intelligent Embedded Systems University of Kassel Kassel 34121 Germany

3. Helmholtz-Zentrum Berlin für Materialien und Energie Berlin 14109 Germany

4. Artificial Intelligence Methods for Experiment Design (AIM-ED) Joint Lab Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and University of Kassel Berlin 14109 Germany

Abstract

Fracture surface analysis is of utmost importance with respect to structural integrity of metallic materials. This especially holds true for additively manufactured materials. Despite an increasing trend of automatization of testing methods, the analysis and classification of fatigue fracture surface images is commonly done manually by experts. Although this leads to correct results in most cases, it has several disadvantages, e.g., the need of a huge knowledge base to interpret images correctly. In present work, an unsupervised tool for analysis of overview images of fatigue fracture surface images is developed to support nonexperienced users to identify the origin of the fracture. The tool is developed using fracture surface images of additively manufactured Ti6Al4V specimens fatigued in the high‐cycle‐fatigue regime and is based on the identification of river marks. Several recording parameters seem to have no significant influence on the results as long as preprocessing settings are adapted. Moreover, it is possible to analyze images of other materials with the tool as long as the fracture surfaces contain river marks. However, special features like multiple origins or origins located in direct vicinity to the surface, e.g., caused by increased plastic strains, require a further tool development or alternative approaches.

Funder

Universität Kassel

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3