Novel Aerosol‐Based Approach toward Mesoporous Silica Nanoparticles

Author:

Fortugno Paolo1ORCID,López-Cámara Claudia-Francisca12ORCID,Kruse Jan Patrick1,Hammad Mohaned3ORCID,Wiggers Hartmut12ORCID

Affiliation:

1. Reactive Fluids EMPI, Institute for Energy and Materials Processes Duisburg 47057 Germany

2. Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Duisburg 47057 Germany

3. Particle Science and Technology EMPI, Institute for Energy and Materials Processes Duisburg 47057 Germany

Abstract

This study introduces a novel gas‐phase method for the synthesis of mesoporous silica nanoparticles (MSNs). The method is a two‐step templating approach by first forming silicon‐coated carbon structures in a hybrid microwave‐plasma/hot‐wall reactor followed by an annealing step to produce mesoporous silica with distinct nanostructure and porosity. Two different (sacrificial) carbonaceous templates have been prepared (plasma reactor) and coated (hot‐wall reactor), 2D few‐layer graphene (FLG) flakes and soot‐like fractal aggregates. Results show that the wall thickness of the porous silica structures can be adjusted by changing the concentration of the silicon precursor (monosilane). High monosilane concentrations, however, result in solid silica particles after annealing. Using soot‐like particle templates permitted to control of the shell thickness of the hollow porous particles, while the FLG template results in ultrathin silica sheets after heat treatment. The pore volume and specific surface area increase up to 263 m2 g−1 and 0.6 cm3 g−1, respectively, by the formation of hollow porous particles. An adsorption study on carbamazepine reveals up to ≈86% removal. The gas‐phase aerosol‐based template method presented here offers scalability and versatility, and it is capable of producing MSNs with a controlled structure and porosity by modifying the carbonaceous templates.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3