Semantic Representation of Low‐Cycle‐Fatigue Testing Data Using a Fatigue Test Ontology and ckan.kupferdigital Data Management System

Author:

Nasrabadi Hossein Beygi1ORCID,Hanke Thomas2ORCID,Skrotzki Birgit1ORCID

Affiliation:

1. Department 5.2 ‐ Metallic High‐Temperature Materials Bundesanstalt für Materialforschung und ‐prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany

2. Assessment of Materials and Lifetime Concepts Fraunhofer‐Institut für Werkstoffmechanik (IWM) Wöhlerstraße 11 79108 Freiburg im Breisgau Germany

Abstract

Addressing a strategy for publishing open and digital research data, this article presents the approach for streamlining and automating the process of storage and conversion of research data to those of semantically queryable data on the web. As the use case for demonstrating and evaluating the digitalization process, the primary datasets from low‐cycle‐fatigue testing of several copper alloys are prepared. The fatigue test ontology (FTO) and ckan.kupferdigital data management system are developed as two main prerequisites of the data digitalization process. FTO has been modeled according to the content of the fatigue testing standard and by reusing the basic formal ontology, industrial ontology foundry core ontology, and material science and engineering ontology. The ckan.kupferdigital data management system is also constructed in such a way that enables the users to prepare the protocols for mapping the datasets into the knowledge graph and automatically convert all the primary datasets to those machine‐readable data which are represented by the web ontology language. The retrievability of the converted digital data is also evaluated by querying the example competency questions, confirming that ckan.kupferdigital enables publishing open data that can be highly reused in the semantic web.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3