Improved Antifouling Ability for Double‐Network Hydrogel Coatings with Excellent Elastic and Toughness under Marine Tidal Environment

Author:

Li Xinglinmao1,Gou Jianglin1,Feng Huimeng1,Sun Xiao1,Qin Xude1,Wang Wei1,Li Wen1,Chen Shougang1ORCID

Affiliation:

1. School of Materials Science and Engineering Ocean University of China Qingdao 266100 China

Abstract

The marine coating in the tidal zone is crucial to restoring its protective function in the case of coating defects, mainly due to the structural damage of the coating by the alternation of wet and dry in the tidal zone and the surface damage of the coating by the impact of sand and gravel. Hydrophilic materials such as hydrogel transformed the tidal zone into an entire immersion zone. Due to the complexation of copper, the fouling problem can be effectively reduced. The coating (AAm/Alginate‐Ca/Cu‐BTA) has excellent mechanical properties (modulus: 200 kPa, toughness 128 J m−2) and significant adhesion (138 J m−2). Otherwise, herein, simultaneously mechanical tests of hydrogels at different temperatures and excellent mechanical properties (modulus: 160 kPa, toughness 100 J m−2) after 7 days of use in alternating dry and wet environments every 6 h are shown. It's proved that the coating has an excellent antifouling and anticorrosion effect. Meanwhile, theoretical study reveals the nature of the weak mechanical properties of hydrogel materials at low temperatures. This work provides an effective strategy for preparing hydrogel coatings with excellent mechanical properties and marine anticorrosion and antifouling. It also proves that hydrogels have broad application prospects in marine tidal zone by excellent water retention performance.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3