Low‐Pressure Nitrocarburizing in Standard Vacuum Furnaces—Preliminary Studies

Author:

Pawęta Sylwester1,Galeziewska Monika2ORCID,Rewers Adam1,Pawęta Przemysław1,Szternal Bartłomiej1,Pietrasik Robert1

Affiliation:

1. Institute of Materials Science and Engineering Lodz University of Technology Stefanowskiego 1/15 90 924 Lodz Poland

2. Institute of Polymer and Dye Technology Lodz University of Technology Stefanowskiego 16 90 537 Lodz Poland

Abstract

For the first time, low‐pressure nitrocarburizing process is performed in a minorly modified standard vacuum furnace on 16MnCr5 alloy steel samples. Ammonia and acetylene are used as a source of nitrogen and carbon, respectively. Lowering the pressure of the process ensures longer and more efficient ammonia dissociation. To prove the safety of the process, exhaust gases are investigated online using residual gas analyzer mass spectrometer, whereas reaction products deposited on the sample's surface are studied by means of time‐of‐flight secondary ion mass spectrometer. Possible reactions taking place in the atmosphere of the chamber are written down. In the results of conducted examinations, it is confirmed that no toxic gases are generated, and no cyanides and polycyclic aromatic hydrocarbons are formed during the process. Additionally, microstructure analysis of the cross sections of nitrocarburized sample is performed using scanning electron microscopy (SEM) and optical microscopy. It confirms the diffusion of nitrogen and carbon into the near surface layer. SEM/energy‐dispersive X‐ray spectroscopy analysis demonstrates precipitation of carbide and carbonitride, what is proved by X‐ray diffractometer and microhardness profile analysis. The presented low‐pressure nitrocarburizing results in an increase in hardness from about 200 to over 500 HV and the formation of an effective case depth of about 20 μm, after only 20 min of the process.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3