Affiliation:
1. Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Indore Simrol Indore 453552 India
2. Research Center for Structural Materials National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
Abstract
The surface properties of the AZ91D alloy are altered using surface mechanical attrition treatment (SMAT), a promising method of severe surface deformation, where the role of process parameters is crucial. In this study, specimens are SMATed using ≈3 and ≈10 m s−1 ball velocities (maintaining a constant percentage coverage). The SMATed specimens show higher twin density near the surface, which is reduced gradually, and twin thickness is increased with increasing depth. Further, high‐velocity balls cause more twin density and better grain refinement (≈32 nm grain size at the surface). The higher ball velocity helps form a considerably thicker gradient layer (≈3500 μm) with higher hardness (≈1.98 GPa) and compressive residual stress (≈281 MPa) within a shorter SMAT duration (≈10 min). Ball velocity also influences nanomechanical properties such as nanohardness, creep resistance, strain rate sensitivity (SRS), etc. The non‐SMATed alloy's SRS is about 0.037–0.040. The gradient microstructure affects SRS. The SRS value near the SMATed surface (where the reduced grain size plays a dominating role) is about 0.018–0.027; however, it drops suddenly to ≈0.01 (with a slight increase in depth), and subsequently, it rises with an increased distance in the SMATed layer (where twins play a dominating role).
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献