Investigation into the heat transfer models for the hot crude oil transportation in a long‐buried pipeline

Author:

Yuan Qing1ORCID,Luo Yiyang1ORCID,Shi Teng2,Gao Yuyao1,Wei Jinjia1,Yu Bo3,Chen Yujie3

Affiliation:

1. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an China

2. Yakela Oil & Gas Exploration Factory Northwest Oilfield Branch China Petroleum & Chemical Corporation Kuqa China

3. School of Mechanical Engineering Beijing Institute of Petrochemical Technology Beijing China

Abstract

AbstractBased on reasonable simplifications of a two‐dimensional (2D) energy equation, a basic heat transfer equation in 1D form is obtained for the hot crude oil transportation in a long‐buried pipeline. To enclose the heat transfer equation, the overall heat transfer coefficient and the numerical simulation of temperature fields of pipe wall and soil are introduced, and they together with the basic heat transfer equation constitute 1D and cross‐dimensional heat transfer models of crude oil transportation, respectively. Some numerical procedures, including grid generation, partial differential equation discretization, and algebraic equation solution, are combined to solve the two heat transfer models. Based on the designed cases with different pipeline parameters, the relative deviation between the numerical results from the two heat transfer models does not exceed 1%, and the two heat transfer models agree well. Furthermore, the nonuniform natural soil temperature field is designed, and its influence on the oil temperature and the deviation of the 1D heat transfer model is investigated. Under the condition of the nonuniform natural soil temperature field, the atmospheric temperature as the ambient temperature in the 1D heat transfer model causes an apparent deviation, whereas the soil temperature at the buried depth of the pipeline in the natural soil temperature field as the ambient temperature does not. This study can provide a reference for the reasonable selection and use of the heat transfer models of the buried hot oil pipeline.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Reference23 articles.

1. YuanQ WuZ LiW et al. Comparative study on atmospheric temperature models for the buried hot oil pipeline. The 12th International Pipeline Conference.2018;51876:V002T08A002.

2. Thermal Resistance of a Buried Cylinder With Constant Flux Boundary Condition

3. Heat losses from a fluid flowing in a buried pipe

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3