Impacts of climate and land coverage changes on potential evapotranspiration and its sensitivity on drought phenomena over South Asia

Author:

Ali Shahzad12ORCID,Basit Abdul3,Umair Muhammad1,Ni Jian1

Affiliation:

1. College of Life Sciences Zhejiang Normal University Jinhua China

2. Department of Agriculture Hazara University Mansehra Pakistan

3. Remote Sensing Information and Digital Earth Center, School of Computer Science and Technology Qingdao University Qingdao China

Abstract

AbstractUnderstanding the spatiotemporal historical drought pattern and their sensitivity effect on potential evapotranspiration (PET) and vegetation coverage changes is essential for efficient drought mitigation policies under climate change. In this study, we used the standardized precipitation evapotranspiration index (SPEI) at multiple timescales, such as SPEI‐01, SPEI‐03, SPEI‐06, SPEI‐09 and SPEI‐12; we explored their regional‐scale dry and wet annual changes across seven sub‐regions of South Asia from 1902 to 2018. Results suggest that from 1981 to 2018, the extreme drought of SPEI has increased in South Asia, which mostly affects the summer and winter growing seasons, that is, SPEI‐06 to SPEI‐12 across seven sub‐regions of South Asia. The frequency of drought events during dry and wet annual changes of SPEI had an extremely dry year starting from 1998 to 2018, which mostly affected the South Asia region. Data from the past 18 years showed that the land changing detection has increased in the forests, cultivated land, arid land, savanna and farmland; by contrast, there has been significantly reduced permanent ice and snow, mixed forests, open shrub, grasslands, permanent wetlands, water bodies and evergreen broadleaf forests. Seasonal SPEI presented diverse characteristics such as showing a dry trend in Afghanistan, India, Pakistan and Sri Lanka during autumn and winter. Afghanistan and Bhutan are wet during the summer compared with other sub‐regions of South Asia, with drought frequency occurring at 45.3% and 44.4%. Sri Lanka, Pakistan and India are the driest regions in South Asia due to their high drought frequency, duration and intensity. The correlation between PET and crop water stress index (CWSI), PET and regional ETp reduction (Er) indicated a considerably negative correlation, while a significantly positive correlation was found between CWSI and Er, NDVI and Er. This study provides a comprehensive assessment of climate and vegetation coverage changes on PET, ET and SPEI, and can help in formulating long‐term adaptive strategies to reduce the cumulative impacts of droughts.

Funder

Zhejiang Normal University

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3