Effect of DMA characteristics on risk and asset analysis of the Metropolitan Waterworks Authority pipe network

Author:

Nawik Manatsawee1ORCID,Pilailar Sitang1,Chittaladakorn Suwatana1

Affiliation:

1. Department of Water Resources Engineering Kasetsart University Bangkok Thailand

Abstract

AbstractThis study examines the District Metering Area (DMA) characteristics in the pipe networks of Metropolitan Waterworks Authority (MWA), with a specific focus on risk and asset analysis, including water loss rate, water usage, and pipe density. The objective is to classify the DMA types based on these characteristics and to determine the influence of area characteristics on water distribution infrastructure. This is achieved by employing risk assessment and asset valuation techniques to identify pipes that require replacement. Initially, the Area Characteristic Index (ACI) for all 64 DMAs within the Ladprao service office branch was evaluated using a fuzzy inference system. Subsequently, six selected DMAs from three distinct area types were analyzed by the fuzzy logic model to figure out the Risk Index (RI) values. Concurrently, the Infrastructure Value Index (IVI) contributed to the asset valuation. These indices pinpointed both the high‐risk pipe routes and the poor‐condition infrastructure. Moreover, the Modified Risk‐Value Index (MRVI) was adopted to prioritize these pipe routes within a constrained budget. The main conclusion drawn is that while DMA characteristics do not directly influence the identification of deteriorated pipes through risk assessment and asset analysis methods, the characteristic of a high water loss rate does impact the number of pipe routes identified by the RI.

Publisher

Wiley

Subject

Water Science and Technology,Environmental Engineering,General Chemistry,Filtration and Separation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3