Affiliation:
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University Chengdu People's Republic of China
2. PetroChina Tarim Oilfield Company Korla People's Republic of China
3. Research Institute of Experiment and Detection, Xinjiang Oilfield Company Karamay People's Republic of China
Abstract
AbstractA novel modified polysaccharide composite preformed particle gel (MCPG) was synthesized as a profile control agent to improve the situation of high water cut and low oil recovery. Then, the structure of MCPG was characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and environmental scanning electron microscope (ESEM). Subsequently, the impact of MCPG on enhanced oil recovery was investigated through nuclear magnetic resonance (NMR) and core displacement experiments. The results of FTIR, XRD, and ESEM indicate that monomers have been successfully intercalated into the layered structure of nanoscale sodium bentonite. In the condition of 130°C and salinity of 240,000 mg/L, the value of the swelling ratio and the toughness factor can reach about 30 and 0.87, respectively. The results of nonlinear fitting indicate that the relationship between the resistance coefficient and residual resistance coefficient with the matching coefficient (β) followed a power function, while the blocking water efficiency with β followed an exponential function. When the permeability ratio was as high as 30.58, MCPG still exhibited excellent profile improvement performance. NMR experiments proved that MCPG increased the displacement resistance in large pores and effectively enhanced the displacement efficiency in medium pores and small pores. The oil displacement efficiency in MCPG flooding and subsequent water flooding stages increased by 18.65% and 8.42%, respectively.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献