CircSmox knockdown alleviates PC12 cell apoptosis and inflammation in spinal cord injury by miR‐340‐5p/Smurf1 axis

Author:

Han Ziyin1,Mou Zufang2,Jing Yulong1,Jiang Rong3,Sun Tao1ORCID

Affiliation:

1. Department of Traumatic Orthopedics Yantaishan Hospital Yantai China

2. Department of Nosocomial Infection Yantaishan Hospital Yantai China

3. Department of Physiology Binzhou Medical University Binzhou China

Abstract

AbstractBackgroundSpinal cord injury (SCI) is a traumatic central nervous system disorder that leads to irreversible neurological dysfunction. Emerging evidence has shown that differentially expressed circular RNAs (circRNAs) after SCI is closely associated with the pathophysiological process. Herein, the potential function of circRNA spermine oxidase (circSmox) in functional recovery after SCI was investigated.MethodsDifferentiated PC12 cells stimulated with lipopolysaccharide (LPS) were employed as an in vitro model for neurotoxicity research. Levels of genes and proteins were detected by quantitative real‐time PCR and Western blot analysis. Cell viability and apoptosis were determined by CCK‐8 assay and flow cytometry. Western blot analysis was used to detect the protein level of apoptosis‐related markers. The levels of interleukin (IL)‐1β, IL‐6, IL‐8, and tumor necrosis factor (TNF)‐α. Dual‐luciferase reporter, RIP, and pull‐down assays were used to confirm the target relationship between miR‐340‐5p and circSmox or Smurf1 (SMAD Specific E3 Ubiquitin Protein Ligase 1).ResultsLPS elevated the levels of circSmox and Smurf1, but decreased the levels of miR‐340‐5p in PC12 cells in a dose‐dependent manner. Functionally, circSmox silencing alleviated LPS‐induced apoptosis and inflammation in PC12 cells in vitro. Mechanistically, circSmox directly sponged miR‐340‐5p, which targeted Smurf1. Rescue experiments showed that miR‐340‐5p inhibition attenuated the neuroprotective effect of circSmox siRNA in PC12 cells. Moreover, miR‐340‐5p suppressed LPS‐triggered neurotoxicity in PC12 cells, which was reversed by Smurf1 overexpression.ConclusionCircSmox enhances LPS‐induced apoptosis and inflammation via miR‐340‐5p/Smurf1 axis, providing an exciting view of the potential involvement of circSmox in SCI pathogenesis.

Publisher

Wiley

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3