Rheology guiding the design and printability of aqueous colloidal composites for additive manufacturing

Author:

Bean Ren H.1ORCID,Rau Daniel A.2,Williams Christopher B.2,Long Timothy E.1

Affiliation:

1. School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials & Manufacturing (SM3) Arizona State University Tempe Arizona USA

2. Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech Blacksburg Virginia USA

Abstract

AbstractVat photopolymerization (VP) and direct ink write (DIW) additive manufacturing (AM) provide complex geometries with precise spatial control employing a vast array of photo‐reactive polymeric systems. Although VP is recognized for superior resolution and surface finish, DIW provides versatility for higher viscosity systems. However, each AM platform presents specific rheological requirements that are essential for successful 3D printing. First, viscosity requirements constrain VP polymeric materials to viscosities below 10 Pa s. Thus, this requirement presents a challenging paradox that must be overcome to attain the physical performance of high molecular weight polymers while maintaining suitable viscosities for VP polymeric materials. Second, the necessary rheological complexity that is required for DIW pastes requires additional rheological measurements to ensure desirable thixotropic behavior. This manuscript describes the importance of rheological measurements when designing polymeric latexes for AM. Latexes effectively decouple the dependency of viscosity on molecular weight, thus enabling high molecular weight polymers with low viscosities. Photo‐crosslinking of water‐soluble monomers and telechelic oligomeric diacrylates in the presence of the latex enables the fabrication of a scaffold, which is restricted to the continuous aqueous phase and effectively surrounds the latex nanoparticles enabling the printing of otherwise inaccessible high molecular weight polymers. Rheological testing, including both steady and oscillatory shear experiments, provides insights into system properties and provides predictability for successful printing. This perspective article aims to provide an understanding of both chemical functionality (photo‐ and thermal‐reactivity) and rheological response and their importance for the successful design and evaluation of VP and DIW processable latex formulations.

Funder

National Science Foundation

Office of Energy Efficiency and Renewable Energy

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent trends in the additive manufacturing of polyurethanes;Polymer International;2023-11-06

2. The role of additives in rheology and processing;Journal of Vinyl and Additive Technology;2023-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3