The comparative study of biocomposites based on hydrochar and chitosan‐modified urea‐formaldehyde resins

Author:

Ristić Mirjana1,Samaržija‐Jovanović Suzana1ORCID,Jovanović Vojislav1,Kostić Marija2,Jovanović Tijana3,Marković Gordana4,Kojić Marija5,Vujčić Ivica5,Marinović‐Cincović Milena5

Affiliation:

1. Faculty of Sciences and Mathematics University of Priština in Kosovska Mitrovica Kosovska Mitrovica Serbia

2. Faculty of Technology University of Novi Sad Novi Sad Serbia

3. Faculty of Science and Mathematics University of Niš Niš Serbia

4. Tigar Pirot Serbia

5. Vinča Institute of Nuclear Sciences – National Institute of thе Republic of Serbia University of Belgrade Belgrade Serbia

Abstract

AbstractTo provide new insight into the field of urea‐formaldehyde (UF) adhesives science, in this work, for the first time, UF resin was modified with hydrochar of spent mushroom substrate (HCUF) and chitosan (CHUF) to investigate the effect of these bio‐fillers on the hydrolytic and thermal stability of in situ prepared UF resins. The characterization of the modified UF biocomposites was performed using X‐ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), non‐isothermal thermogravimetric analysis (TG), differential thermal gravimetry (DTG), and differential thermal analysis (DTA). Scanning electron micrographs (SEM) of the CHUF and HCUF biocomposites show a spherical structure that differs from each other because the surface of the CHUF biocomposite has pronounced pores that form a network structure. With its hydroxyl and amino groups, chitosan bonding to UF resin through hydrogen bonds, which is confirmed by FTIR analysis. The content of free FA in CHUF biocomposite is 0.06%, while that of HCUF is higher and amounts to 0.48%. The content of released FA in both modified UF biocomposites was similar (2.5% and 2.8% for CHUF and HCUF, respectively). The hydrolytic stability of CHUF is slightly higher compared to the HCUF biocomposite. Thermal analysis shows that the CHUF is thermally more stable because it starts to decompose at a slightly higher temperature than the HCUF biocomposite.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3