Assessment for operational assimilation of horizontal line of sight winds from the European Space Agency's Aeolus at the Met Office

Author:

Halloran Gemma1ORCID,Forsythe Mary1

Affiliation:

1. Met Office Exeter UK

Abstract

AbstractThe European Space Agency's Aeolus satellite was launched in August 2018 and began delivering horizontal line‐of‐sight (HLOS) wind observations in early September 2018. In early 2019, the Met Office began assessing the suitability of the HLOS winds for operational assimilation into its global numerical weather prediction system. We performed a number of assimilation experiments to assess the impact of HLOS wind observations on our global forecasts. We have found that assimilating HLOS winds changes the zonal winds in the analysis fields predominantly in the Tropics and Southern Hemisphere, with the largest changes being in the upper troposphere and lower stratosphere. This has a positive impact on the accuracy of the global weather forecasts, with improvements in the root‐mean‐square error seen throughout the troposphere. Assimilation of Aeolus HLOS winds improves the standard deviation of the observation minus background (a 6 hr forecast) of almost all other observation types, suggesting that the numerical weather prediction model analysis is improved, which consequently improves the 6 hr forecast. In a set of short‐period observation denial experiments, we found that assimilating Aeolus has an impact similar in magnitude to assimilating surface winds from scatterometers. Assimilating winds from the Rayleigh channel has approximately three times the impact that assimilating HLOS winds from the Mie channel does. Both channels contribute a measureable improvement to the global forecast, and we therefore started operational assimilation of winds from the Mie channel in December 2020 and the Rayleigh channel operationally in May 2022.

Funder

Newton Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3