MHD nonlinear natural convection from a uniformly moving porous vertical plate with constant heat and mass flux in the presence of thermal radiation, diffusion‐thermo, heat sink, and chemical reaction

Author:

Khanam Masuma1ORCID,Ahmed Nazibuddin2

Affiliation:

1. Department of Mathematics Gauhati University Guwahati Assam India

2. Department of Mathematics Cotton University Guwahati Assam India

Abstract

AbstractAn attempt has been made to investigate the problem of nonlinear free convection heat and mass transfer flow past an infinite vertical porous plate embedded in a porous medium by taking into account thermal radiation and heat sink with constant heat and mass flux. Transversely oriented and of uniform strength , a magnetic field has been introduced to the fluid area. The nonlinear density variation with temperature as well as concentration are the basis for the current physical situation, which is explained by this mathematical model. Exact solutions are derived for momentum equation, energy equation, and species continuity equation under the relevant boundary conditions. The dimensionless governing equations are analytically solved. The influence of various physical parameters, such as Dufour number, Schmidt number, thermal Grashof number, magnetic parameter, mass Grashof number, heat sink, thermal radiation, Prandtl number, chemical reaction parameter on the flow, and transport characteristic, has been presented graphically and in tabular form. The novelty of the present investigation is that here both constant heat and mass flux at the plate are taken into account in addition to thermal radiation and heat sink. The findings of the mathematical study demonstrate that velocity, temperature, and skin friction intensify with a rise in the Dufour number this is due to the fact that the convection current becomes stronger as the Dufour number rises. Fluid's concentration declines as the Schmidt number grows, or the concentration rises as the mass diffusivity rises. Fluid temperature is enhanced with high thermal diffusivity. Frictional resistance on the plate hikes due to thermal buoyancy force.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3