Auto‐encoder neural network incorporating x‐ray fluorescence fundamental parameters with machine learning

Author:

Dirks Matthew1ORCID,Poole David1

Affiliation:

1. Department of Computer Science University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractWe consider energy‐dispersive x‐ray fluorescence (XRF) applications where the fundamental parameters method is impractical such as when instrument parameters are unavailable. For example, on a mining shovel or conveyor belt, rocks are constantly moving (leading to varying angles of incidence and distances) and there may be other factors not accounted for (like dust). Neural networks do not require instrument and fundamental parameters but training neural networks requires XRF spectra labeled with elemental composition, which is often limited because of its expense. We develop a neural network model that learns from limited labeled data and also benefits from domain knowledge by learning to invert a forward model. The forward model uses transition energies and probabilities of all elements and parameterized distributions to approximate other fundamental and instrument parameters. We evaluate the model and baseline models on a rock dataset from a lithium mineral exploration project. Our model works particularly well for some low‐Z elements (Li, Mg, Al, and K) as well as some high‐Z elements (Sn and Pb) despite these elements being outside the suitable range for common spectrometers to directly measure, likely owing to the ability of neural networks to learn correlations and nonlinear relationships.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Spectroscopy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3