Enhancement in tribological performance of plastic oil by solid lubricant additives

Author:

Sikdar Soumya1ORCID,Rahman Md Hafizur1ORCID,Ralls Alessandro M.1,Menezes Pradeep L.1

Affiliation:

1. Department of Mechanical Engineering University of Nevada Reno Nevada USA

Abstract

AbstractIn this study, plastic oil (PO) as a potential lubricant was investigated. The base PO was incorporated with graphene nanoplatelets (GNP) and hexagonal boron nitride (hBN) nano additives in varying concentrations to form nano lubricants. Their viscosity, tribological, acidic/basic nature, thermal degradation and dispersion stability properties were investigated. It was observed that 1.5 wt% GNP and 1.0 wt% hBN added separately to the base PO, provided the lowest coefficient of friction (COF) and wear volume. Based on these lowest COF and wear volume insights, three nano lubricant mixtures were formulated by incorporating both GNP and hBN at different combinations using base PO. Positive synergistic behaviour was observed for COF (49%–60% reduced) and wear volume (90%–97% reduced) for two combination mixtures compared to the base PO. These improvements in the mixture were due to the polishing, mending mechanisms and tribofilm that protected the interacting surfaces.

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3