Riffle algal and macroinvertebrate recovery from wet‐season flood disturbance in a tropical savannah river, Northern Australia

Author:

Townsend Simon12

Affiliation:

1. Faculty of Science and Technology Charles Darwin University Casuarina Northern Territory Australia

2. Water Resources Department of Environment, Parks and Water Security Palmerston Northern Territory Australia

Abstract

AbstractSuccession occurs when river biota recovers from the loss of biomass and diversity caused by flood disturbance, and has rarely been examined in the tropical savannah biome. Hypotheses are tested which address the environmental context and recovery of riffle macroinvertebrates in an Australian perennial, tropical savannah river, located in a catchment with low anthropogenic impact. Recovery occurred over a 32‐week dry‐season period of gradually declining discharge with near‐stable water quality, after a 23‐week wet‐season flood‐disturbance period, which was typical of the river's flow regime. Prolonged, benign environmental conditions during recovery facilitated the accrual of macroalgae. Macroinvertebrate abundance, mediated by macroalgal biomass, and diversity increased at a logarithmic, asymptotic rate over the recovery period. Macroinvertebrate assemblages and functional feeding groups (FFGs) tended to become more similar between consecutive sample dates as recovery progressed, though with variable abundances of core taxa (Orthocladiinae, Hydropsychidae, Orthotrichia, Chironominae and Pyralidae) and prominence of Hydroptila late in the recovery period. Filterer abundances fluctuated most, whilst the relative abundance of herbivorous shredders and predators generally increased. The return of macroinvertebrate abundance and diversity to its pre‐disturbance state is attributed to the similar pre‐ and post‐disturbance environmental conditions. Recovery broadly agreed with the secondary succession paradigm for macroinvertebrates. Macroinvertebrate succession was probably driven mainly by biotic factors, after the initial colonisation period. However, this requires elucidation and expansion of the current paradigm of river benthic succession from flood disturbance to address macroinvertebrate population dynamics under benign abiotic environmental conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3