Affiliation:
1. Department of Electrical Engineering Tsinghua University Beijing China
2. Suzhou Institute of Biomedical Engineering and Technology CAS Suzhou China
Abstract
Advanced neurostimulation systems require intimate interface with brain or peripheral nervous system to provide a therapeutic modulation for patients experiencing neural function loss. To achieve these, it requires stimulators with high‐channel counts and mechanical flexibility. In this invited paper, we showed a 4T1C neurostimulation pixel circuit with an active‐matrix architecture, offering the opportunity for high‐channel counts. In addition, a 4‐mask photolithographic process for highly uniform organic thin‐film transistor (OTFT) integrated system was demonstrated for mechanical flexibility, which shows a high device yield of 100% (50/50) and small device variation in threshold voltage of 0.64 V and in mobility of 4.9%. By implementing OTFTs to this novel neurostimulation architecture, we fabricated an OTFT‐based high‐channel‐count neurostimulation system, showing a high stimulator yield of 71.0% and small variation of 15.6% for the output stimulation currents among pixels.