Automatic pterygopalatine fossa segmentation and localisation based on DenseASPP

Author:

Wang Bing1ORCID,Shi Weili1ORCID

Affiliation:

1. School of Computer Science and Technology Changchun University of Science and Technology Changchun Jilin China

Abstract

AbstractBackgroundAllergic rhinitis constitutes a widespread health concern, with traditional treatments often proving to be painful and ineffective. Acupuncture targeting the pterygopalatine fossa proves effective but is complicated due to the intricate nearby anatomy.MethodsTo enhance the safety and precision in targeting the pterygopalatine fossa, we introduce a deep learning‐based model to refine the segmentation of the pterygopalatine fossa. Our model expands the U‐Net framework with DenseASPP and integrates an attention mechanism for enhanced precision in the localisation and segmentation of the pterygopalatine fossa.ResultsThe model achieves Dice Similarity Coefficient of 93.89% and 95% Hausdorff Distance of 2.53 mm with significant precision. Remarkably, it only uses 1.98 M parameters.ConclusionsOur deep learning approach yields significant advancements in localising and segmenting the pterygopalatine fossa, providing a reliable basis for guiding pterygopalatine fossa‐assisted punctures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3