Interface modified Si@SiO2/PVDF composite dielectrics with synchronously ameliorative dielectric and mechanical properties

Author:

Kong Fanrong1,Zhou Wenying1ORCID,Peng Weiwei1,Liang Chen2,Wu Hongju1,Lin Na1,Wang Guangheng1,Liu Dengfeng1,Feng Aihong1,Liu Xiangrong1

Affiliation:

1. School of Chemistry and Chemical Engineering Xi'an University of Science & Technology Xi'an China

2. Shanghai Carbon Power New Energy Technology Co., Ltd Shanghai China

Abstract

AbstractTo efficaciously decrease dielectric loss while still synchronously harvesting a high dielectric constant (ε′) and breakdown strength (Eb), as well as good mechanical properties in silicon (Si)/poly(vinylidene fluoride) (PVDF), in this work, the core@shell structured Si@silicon dioxide (SiO2) particles were first prepared via a high temperature oxidation, and subsequently incorporated into the PVDF to generate morphology‐dependent composites with a high‐ε′ and Eb but low loss. The SiO2 shell effects on the morphology, dielectric, and mechanical properties of PVDF composites were explored. In comparison to pristine Si/PVDF, the Si@SiO2/PVDF presents significantly suppressed loss and boosted Eb because the SiO2 interlayer not only efficiently blocks the connection between the raw Si and greatly impedes the long‐range charges migration even at high filler loadings, but also obviously improves the compatibility between Si and PVDF at the interfaces which promotes fillers' uniform dispersion in host matrix, thus leading to enhanced dielectric and mechanical properties. The fitting result by the Havriliak–Negami equation theoretically elucidates the SiO2 interlayer's suppression effect on charge migration behavior in the composites. More importantly, dielectric properties can be efficiently turned via tailoring the SiO2 shell thickness. The Si@SiO2/PVDF with simultaneously enhanced dielectric and mechanical performances shows promising uses in the electrical and microelectronics industries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3