Insights into landslide susceptibility in different karst erosion landforms based on interpretable machine learning

Author:

Sun Deliang1,Wang Jing1,Wen Haijia2ORCID,Ding Yuekai1,Gu Qingyu1,Zhang Jialan2ORCID,Zhang Fengtai3

Affiliation:

1. Key Laboratory of GIS Application Research, School of Geography and Tourism Chongqing Normal University Chongqing China

2. School of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas Chongqing University Chongqing China

3. School of Management Chongqing University of Technology Chongqing China

Abstract

AbstractThe aim of the present study was to assess differences in the conditioning factors and the performance of landslide susceptibility mapping (LSM), employing the SHapley Additive exPlanations (SHAP) model to gain profound insights into the intrinsic decision‐making mechanism of LSM in diverse landforms. Two typical karst erosion landforms were selected as the research areas. Based on 15 conditioning factors, LSMs for the two areas were developed using the Bayesian optimization random forest (RF) and eXtreme Gradient Boosting (XGBoost). The SHAP model was used to explore the landslide formation mechanisms from both global and local perspectives. The results show that the area under the curve (AUC) values of the XGBoost models were 0.791 and 0.761, and the AUC values of the RF models were 0.844 and 0.817, in the two different landform areas, respectively. The RF model's accuracy was higher than that of the XGBoost model in both regions. In the low‐elevation hills area, the primary three conditioning factors were identified as slope, topographic relief and distance from the river. Conversely, in the microrelief and mesorelief low mountain area, the predominant conditioning factors were elevation, distance from the river and distance from the road. Both karst landform areas exhibited a high sensitivity to the distance from the river, indicating its significant interaction with other factors contributing to landslide occurrences. Notably, the RF model demonstrated superior performance compared to the XGBoost model, rendering it a more suitable choice for conducting landslide susceptibility mapping research in karst erosion landform areas. In the present study, a comprehensive explanatory framework based on the RF‐SHAP model was proposed, which enables both global and local interpretation of landslides in various karst landscapes. Such an approach explores the intrinsic decision‐making mechanism of the model, enhancing the transparency and realism of landslide susceptibility prediction results.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3