Left atrial appendage occlusion: On the need of a numerical model to simulate the implant procedure

Author:

Danielli Francesca1,Berti Francesca1ORCID,Fanni Benigno Marco2,Gasparotti Emanuele2,Celi Simona2ORCID,Pennati Giancarlo1,Petrini Lorenza3

Affiliation:

1. LaBS ‐ Laboratory of Biological Structure Mechanics, Department of Chemistry Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano Milan Italy

2. BioCardioLab Fondazione Toscana G. Monasterio Massa Italy

3. Department of Civil and Environmental Engineering Politecnico di Milano Milan Italy

Abstract

AbstractLeft atrial appendage occlusion (LAAO) is a percutaneous procedure to prevent thromboembolism in patients affected by atrial fibrillation. Despite its demonstrated efficacy, the LAA morphological complexity hinders the procedure, resulting in postprocedural drawbacks (device‐related thrombus and peri‐device leakage). Local anatomical features may cause difficulties in the device's positioning and affect the effectiveness of the device's implant. The current work proposes a detailed FE model of the LAAO useful to investigate implant scenarios and derive clinical indications. A high‐fidelity model of the Watchman FLX device and simplified parametric conduits mimicking the zone of the LAA where the device is deployed were developed. Device‐conduit interactions were evaluated by looking at clinical indicators such as device‐wall gap, possible cause of leakage, and device protrusion. As expected, the positioning of the crimped device before the deployment was found to significantly affect the implant outcomes: clinician's choices can be improved if FE models are used to optimize the pre‐operative planning. Remarkably, also the wall mechanical stiffness plays an important role. However, this parameter value is unknown for a specific LAA, a crucial point that must be correctly defined for developing an accurate FE model. Finally, numerical simulations outlined how the device's configuration on which the clinician relies to assess the implant success (i.e., the deployed configuration with the device still attached to the catheter) may differ from the actual final device's configuration, relevant for achieving a safe intervention.

Funder

Ministero della Salute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3