Exposure to dipentyl phthalate in utero disrupts the adrenal cortex function of adult male rats by inhibiting SIRT1/PGC‐1α and inducing AMPK phosphorylation

Author:

Chen Haiqiong12,Liu Miaoqing1,Li Qiyao3,Zhou Pingjiang1,Huang Jie1,Zhu Qiqi3,Li Zhongrong1,Ge Ren‐shan3

Affiliation:

1. Department of Pediatrics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China

2. Department of Traumatology The Children's Hospital Zhejiang University School of Medicine Hangzhou China

3. Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China

Abstract

AbstractDi‐n‐pentyl phthalate (DPeP) is an endocrine‐disrupting phthalate plasticizer. The objective of this study was to investigate the effect of DPeP on adrenocortical function in adult male rats following in utero exposure. DPeP (0, 10, 50, 100, and 500 mg/kg/day) was administered by gavage to pregnant Sprague–Dawley rats from gestational day 14 to 21. The morphology and function of the adrenal cortex in 56‐day‐old male offspring were studied. DPeP at 100 and 500 mg/kg/day significantly reduced serum aldosterone levels and at 500 mg/kg/day markedly reduced corticosterone and adrenocorticotropic hormone levels. DPeP at 10–500 mg/kg markedly reduced the thickness of zona glomerulosa without affecting the thickness of zona fasciculata. DPeP significantly downregulated the expression of Agtr1a, Mc2r, Scarb1, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a2, and Bcl2 genes as well as their proteins. DPeP at 500 mg/kg/day significantly increased phosphorylated AMPK, while DPeP at 100 mg/kg/day and higher doses reduced phosphorylated AKT1 and total SIRT1 level. DPeP at 100 and 500 μM markedly induced reactive oxygen species and apoptosis in H295R cells after 24 h of culture. In conclusion, in utero exposure to DPeP disrupts adrenocortical function of the adult male offspring by (1) increasing AMPK phosphorylation and decreasing AKT1 phosphorylation and SIRT1 levels, (2) reducing adrenocorticotropic hormone levels, and (3) possibly inducing oxidative stress and apoptosis.

Funder

Department of Health of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3