Metformin inhibits high glucose‐induced apoptosis of renal podocyte through regulating miR‐34a/SIRT1 axis

Author:

Zhuang Xudong1,Sun Zhuye2,Du Huasheng3,Zhou Tianhui4,Zou Jing1,Fu Wei5ORCID

Affiliation:

1. Department of Dialysis Linyi Traditional Chinese Medicine Hospital Linyi Shandong China

2. Department of Pharmacy Rizhao Hospital of Traditional Chinese Medicine Rizhao Shandong China

3. Department of Nephrology Qingdao Municipal Hospital Qingdao Shandong China

4. Beijing University of Chinese Medicine Beijing China

5. Department of Drug Dispensing Zibo Central Hospital Zibo Shandong China

Abstract

AbstractBackgroundPrevious studies have reported SIRT1 was inversely modulated by miR‐34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR‐34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear.MethodWe aimed to further elucidate the role of miR‐34a in HG‐treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d‐glucose (30 mM).ResultsMicroarray and RT‐qPCR revealed that miR‐34a was downregulated in HG‐treated podocytes. Additionally, miR‐34a levels increased in MFN‐treated HG‐induced podocytes. CCK‐8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR‐34a upregulation caused restored cell viability and suppressed cell apoptosis in HG‐treated podocytes, and miR‐34a downregulation led to damaged cell survival and induced apoptosis in MFN‐administered and HG‐treated podocytes. The dual luciferase reporter assay showed that SIRT1 3′‐UTR was a direct miR‐34a target. Further studies demonstrated an elevation in SIRT1 levels in HG‐exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR‐34a upregulation led to reduced SIRT1 expression, whereas miR‐34a inhibition increased SIRT1 levels in cells. MFN‐induced miR‐34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1.ConclusionThis study proposes a promising approach to interpret the mechanisms of action of the MFN‐miR‐34a axis involved in DN.

Publisher

Wiley

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3