Affiliation:
1. Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai China
2. Department of Hematology, Shanghai East Hospital Tongji University School of Medicine Shanghai China
3. Department of Endocrinology, Yangpu Hospital Tongji University School of Medicine Shanghai China
Abstract
AbstractBackgroundMultiple myeloma (MM) ranks second among the most prevalent hematological malignancies. Recent studies have unearthed the promise of cuproptosis as a novel therapeutic intervention for cancer. However, no research has unveiled the particular roles of cuproptosis‐related genes (CRGs) in the prediction of MM diagnosis.MethodsMicroarray data and clinical characteristics of MM patients were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed gene analysis, least absolute shrinkage and selection operator (LASSO) and support vector machine‐recursive feature elimination (SVM‐RFE) algorithms were applied to identify potential signature genes for MM diagnosis. Predictive performance was further assessed by receiver operating characteristic (ROC) curves, nomogram analysis, and external data sets. Functional enrichment analysis was performed to elucidate the involved mechanisms. Finally, the expression of the identified genes was validated by quantitative real‐time polymerase chain reaction (qRT‐PCR) in MM cell samples.ResultsThe optimal gene signature was identified using LASSO and SVM‐RFE algorithms based on the differentially expressed CRGs: ATP7A, FDX1, PDHA1, PDHB, MTF1, CDKN2A, and DLST. Our gene signature‐based nomogram revealed a high degree of accuracy in predicting MM diagnosis. ROC curves showed the signature had dependable predictive ability across all data sets, with area under the curve values exceeding 0.80. Additionally, functional enrichment analysis suggested significant associations between the signature genes and immune‐related pathways. The expression of the genes was validated in MM cells, indicating the robustness of these findings.ConclusionWe discovered and validated a novel CRG signature with strong predictive capability for diagnosing MM, potentially implicated in MM pathogenesis and progression through immune‐related pathways.
Subject
Immunology,Immunology and Allergy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献