Affiliation:
1. Department of Pharmacy Fujian Medical University Union Hospital Fuzhou Fujian China
2. School of Pharmacy Fujian Medical University Fuzhou Fujian China
3. College of Pharmacy University of Michigan Ann Arbor Michigan USA
Abstract
AbstractA population pharmacokinetic (pop PK) model of polymyxin B was developed using nonlinear mixed‐effects (NONMEM) modeling based on free plasma concentrations to determine whether dose adjustment is required in critically ill patients. One thousand pharmacokinetic profiles for virtual patients with a body weight of 70 kg were simulated using Monte Carlo simulation at different dose scenarios, and area under the concentration–time curve of free drug (fAUC) was computed. The probability of target attainment (PTA) at each minimum inhibitory concentration (MIC) was calculated using fAUC/MIC as a pharmacokinetic/pharmacodynamic (PK/PD) index. The final population PK model was a 2‐compartment model. PTA showed that 3.5 mg/kg/day regimens of polymyxin B effectively achieved the fAUC/MIC target of 10 (one log10 kill) against Pseudomonas aeruginosa strains with MIC of 1 mg/L or less (PTA, 90.7% or greater), while the dose regimen were ineffective against strains with an MIC of 2 mg/L or greater (PTA, 56.9% or less). For Klebsiella pneumoniae, the fAUC/MIC target of 17.4 (one log10 kill) was achieved in more than 90.4% of cases for MIC of 0.5 mg/L or less with 3 mg/kg/day regimens. However, the PTA decreased dramatically as MICs increased above 1 mg/L (PTA, 56.1% or less). The polymyxin B dosage regimen of 3.5 mg/kg/day and 3 mg/kg/day are sufficient to treat P. aeruginosa infections with an MIC of 1 mg/L or less and K. pneumoniae infections with an MIC of 0.5 mg/L or less, respectively. The current recommended dose (1.5–3 mg/kg/day) of polymyxin B appears inadequate to attain the PK/PD target for therapeutic efficacy against infections caused by P. aeruginosa and K. pneumoniae isolates when MIC is above the values.
Subject
Pharmacology (medical),Pharmacology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献