Exploring the Capability of Framework Materials to Improve Cathodes’ Performance for High‐energy Lithium‐ion Batteries

Author:

Konar Rajashree1ORCID,Maiti Sandipan1ORCID,Markovsky Boris1,Sclar Hadar1,Aurbach Doron1ORCID

Affiliation:

1. Department of Chemistry Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA) Bar-Ilan University Ramat Gan 5290002 Israel

Abstract

AbstractLithiated transition metal oxides are the most important cathode materials for lithium‐ion batteries. Many efforts have been devoted in recent years to improving their energy density, stability, and safety, as demonstrated by thousands of publications. However, the commercialization of several promising materials is limited due to obstacles like stability limitations. To overcome the limitations of energetically high‐voltage or high‐capacity cathode materials, unconventional solutions for their surface engineering were suggested; among them, metal–organic frameworks (MOFs) and zeolites have been employed. MOFs possess favorable characteristics for stabilization goals, including manageable structures, topological control, high porosity, large surface area, and low density. This review article explores promising strategies for improving the electrochemical behavior of favorable cathode materials through surface modifications by using MOFs and zeolites. Investigating the potential of this frameworks‐based surface engineering for high energy density batteries’ electrodes is essential for optimal control of their surface chemistry. It may be highly effective to upgrade the performance of high‐energy cathode materials, thus extending the practical use of very high energy density rechargeable batteries.

Funder

Israel Academy of Sciences and Humanities

Publisher

Wiley

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3