Affiliation:
1. Physics of Energy Conversion and Storage, Department of Physics Technical University of Munich James-Franck-Straße 1 85748 Garching Germany
2. Evonik Operations GmbH Paul-Baumann-Straße 1 45772 Marl Germany
3. Catalysis Research Center TUM Ernst-Otto-Fischer-Str. 1 85748 Garching Germany
Abstract
AbstractPolymer membrane electrolyzers benefit from high‐pressure operation conditions and low gas cross‐over and can either conduct protons (H+) or hydroxide ions (OH−). Both types of electrolyzers have a similar design, but differ in power density and the choice of catalysts. Despite the significant endeavor of their optimization, to date, there is no well‐established impedance model for detailed analysis for either type of these devices. This complicates the in‐situ characterization of electrolyzers, hindering the investigation of degradation mechanisms and electrocatalytic processes as a function of applied current density or time. Nevertheless, a detailed understanding of such individual processes and distinguishing the performance‐limiting factors are the keystones for sophisticated device optimization. In this work, an impedance model based on electrode processes has been developed for an anion exchange membrane electrolyzer utilizing iridium oxide anode and platinum cathode electrocatalysts. This model allows to deconvolute the measured impedances into constituents related to the individual electrode processes and to estimate actual physico‐chemical quantities such as the reaction kinetic parameters and double‐layer capacitances. We discuss the meaning of the fitting parameters and show that this model enables, for the first time, the estimation of the electrochemically active surface area of the anode electrocatalysts under reaction conditions.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献