Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction

Author:

Palliyarayil Ansari1,Kumar Borah Rajani12,Vernekar Amit A.12ORCID

Affiliation:

1. Inorganic and Physical Chemistry Laboratory Council of Scientific and Industrial Research (CSIR) – Central Leather Research Institute (CLRI) Chennai 600020 Tamil Nadu India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

Abstract

AbstractPlastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (Angew. Chem. Int. Ed. 2022, 61, e202212013), where it has been shown that integrating the magnetic property of bare Fe3O4 nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.

Funder

Central Leather Research Institute

Publisher

Wiley

Subject

Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3