Reaction Impurity Prediction using a Data Mining Approach**

Author:

Arun Adarsh12,Guo Zhen32,Sung Simon2,Lapkin Alexei A.132ORCID

Affiliation:

1. Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK

2. Cambridge Centre for Advanced Research and Education in Singapore 1 CREATE Way CREATE Tower #05-05 138602 Singapore Singapore

3. Chemical Data Intelligence (CDI) Pte Ltd Robinson Road, #02-00 068898 Singapore Singapore

Abstract

AbstractAutomated prediction of reaction impurities is useful in early‐stage reaction development, synthesis planning and optimization. Existing reaction predictors are catered towards main product prediction, and are often black‐box, making it difficult to troubleshoot erroneous outcomes. This work aims to present an automated, interpretable impurity prediction workflow based on data mining large chemical reaction databases. A 14‐step workflow was implemented in Python and RDKit using Reaxys® data. Evaluation of potential chemical reactions between functional groups present in the same reaction environment in the user‐supplied query species can be accurately performed by directly mining the Reaxys® database for similar or ‘analogue’ reactions involving these functional groups. Reaction templates can then be extracted from analogue reactions and applied to the relevant species in the original query to return impurities and transformations of interest. Three proof‐of‐concept case studies (paracetamol, agomelatine and lersivirine) were conducted, with the workflow correctly suggesting impurities within the top two outcomes. At all stages, suggested impurities can be traced back to the originating template and analogue reaction in the literature, allowing for closer inspection and user validation. Ultimately, this work could be useful as a benchmark for more sophisticated algorithms or models since it is interpretable, as opposed to purely black‐box solutions.

Publisher

Wiley

Subject

Materials Science (miscellaneous)

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3