From a continuous thermal profile to a stepped one: The effect of run of river hydropower plants on the river thermal regime

Author:

Bonacina Luca1ORCID,Mezzanotte Valeria1,Fornaroli Riccardo1ORCID

Affiliation:

1. University of Milano‐Bicocca Department of Earth and Environmental Sciences (DISAT) Milan Italy

Abstract

AbstractBoth reservoirs and run of river power plants affect the thermal regime of rivers but despite the higher number of the latter few studies have focused on their effect. In this study, we investigated the water thermal regime of Serio River (Northern Italy), a subalpine river regulated by a reservoir and characterized by a cascade system of run of river power plants. Water temperature has been monitored continuously for more than 4 years at the extremes of 4 stretches subjected to water diversion and thermal alterations have been quantified. Our results show that hydroelectric power plants act locally causing a considerable thermal alteration that increases with the distance from the diversion weir. Indeed, within the by‐passed stretch, the rate of warming doubles the natural gradient (0.47°C/km vs. 0.19°C/km annually) with peaks in summer (0.73–0.90°C/km on average). By contrast, the run of river power plants keep the water temperature almost constant in the diversion channels. Thus, a cascade system of run of river plants shifts the overall riverine thermal regime from a continuous to a “stepped” longitudinal profile. Results highlight that the thermal effects of run of rivers plants are not negligible and should be considered and monitored continuously. Since there are thousands of hydropower plants powered by flowing waters it is time to consider their thermal impacts in environmental flow policies and bioassessment programs.

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3