A dual‐channel transferable RUL prediction method integrated with Bayesian deep learning and domain adaptation for rolling bearings

Author:

Guo Junyu123ORCID,Wang Zhiyuan12ORCID,Yang Yulai12ORCID,Song Yuhang12,Wan Jia‐Lun4,Huang Cheng‐Geng5

Affiliation:

1. Key Laboratory of Oil & Gas Equipment, Ministry of Education Southwest Petroleum University Chengdu Sichuan P. R. China

2. School of Mechatronic Engineering Southwest Petroleum University Chengdu China

3. Oil and Gas Equipment Technology Sharing and Service Platform of Sichuan Province Southwest Petroleum University Chengdu Sichuan P. R. China

4. School of Computer Science Southwest Petroleum University Chengdu China

5. School of Automation Engineering University of Electronic Science and Technology of China Chengdu China

Abstract

AbstractMany deep learning methods typically assume that the marginal probability distribution between the training and testing bearing data is similar or the same. However, the probability distribution of rolling bearings may deviate significantly under diverse working conditions. To address the above limitations, a novel transferable remaining useful life (RUL) prediction method integrated with Bayesian deep learning and unsupervised domain adaptation (DA) is proposed. First, the signal alignment is executed on the data after the first prediction time to maintain the same granularity and scale across both source and target domains. Second, the multi‐domain features are extracted and sent into the dual‐channel Transformer network (DCTN) incorporating the convolutional block attention module (CBAM) to adequately exploit the abundant degradation information. Then, the DA module is incorporated into the model to mitigate the distribution discrepancies of the extracted high‐level merged features between the source and target domains. Finally, by applying the variational inference method, the DCTN‐CBAM is extended to the Bayesian deep neural network, and the RUL prediction and its corresponding confidence intervals can be conveniently derived. In addition, the generalization capability and effectiveness are validated through six bidirectional transfer RUL prediction tasks across two rolling bearing datasets. The experimental results demonstrate that it could provide a more reliable RUL prediction and efficiently account for the prediction uncertainty.

Funder

China Scholarship Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3