Role of vacancy defects and nanopumping on drug transport efficiency in boron nitride nanotubes

Author:

Jami Hesamodin1,Sabetvand Roozbeh2,Singh Gurvinder1ORCID

Affiliation:

1. School of Biomedical Engineering The University of Sydney Sydney Australia

2. Department of Energy Engineering and Physics, Faculty of Condensed Matter Physics Amirkabir University of Technology Tehran Iran

Abstract

AbstractBoron nitride nanotubes (BNNTs) are promising nanomaterials for drug delivery due to their remarkable mechanical and electrical properties. BNNTs use nanopumping technique to transport drug molecules to target sites when subjected to an external force, such as an electric field or mechanical forces. Despite numerous efforts to investigate BNNTs/biomolecules interactions, the impact of atomic‐scale intrinsic characteristics of BNNT on drug delivery efficiency and delivery time is not well understood. To investigate this, we use molecular dynamics simulations (MD) to develop two simulation models: one with defective BNNT and another with a non‐defective (pristine) BNNT. Here, the fullerene molecule (C20) is introduced into BNNT and transported towards target cells. Our results show that vacancy defects can significantly impact the effectiveness of the nanopumping process. In pristine BNNTs, drug molecules move primarily by translation motion. However, the presence of vacancy defects and their concentration in BNNTs can affect the translation motion of drug molecules. We show that the judicious selection of oscillation frequency and amplitude of Cu tips is important to achieve efficient drug transport. This work provides new insights into the role of structural defects and oscillation on the drug transport efficiency of C20 molecules in BNNT using the nanopumping mechanism.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3