Semi‐solid 3D printing of mesoporous silica nanoparticle‐incorporated xeno‐free nanomaterial hydrogels for protein delivery

Author:

Mahran Alaa12,Özliseli Ezgi1,Wang Qingbo3,Özliseli Ilayda1,Bhadane Rajendra14,Xu Chunlin3,Wang Xiaoju13,Rosenholm Jessica M.1

Affiliation:

1. Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Turku Finland

2. Department of Pharmaceutics Faculty of Pharmacy Assiut University Assiut Egypt

3. Laboratory of Natural Materials Technology Faculty of Science and Engineering Åbo Akademi University Turku Finland

4. Institute of Biomedicine Research Unit for Infection and Immunity University of Turku Turku Finland

Abstract

AbstractMultifunctional biomaterial inks are in high demand for adapting hydrogels in biomedical applications through three‐dimensional (3D) printing. Our previously developed xeno‐free system consisting of anionic cellulose nanofibers (T‐CNF) and methacrylated galactoglucomannan (GGMMA) as a photo(bio)polymer provides high‐performance ink fidelity in extrusion‐based 3D printing. The fusion between nanoparticles and this biomaterial‐ink system is a promising yet challenging avenue worth exploring, due to the colloidal stability of T‐CNF being sensitive to electrostatic interactions. Mesoporous silica nanoparticles (MSNs), with their robust ceramic matrix and fine‐tunable surface chemistries, are well‐established nanocarriers for different biologicals. Here, we fabricated MSNs with different surface modifications resulting in a net surface charge ranging from highly negative to highly positive to develop printable MSNs‐laden nanocomposite biomaterial inks. We utilized rheology as a comprehensive tool to address the matrix interactions with differently surface‐charged MSNs. Fluorescently labeled bovine serum albumin (FITC‐BSA) was used as a model protein for MSN loading, whereby negatively or neutral‐charged MSNs were found suitable to formulate FITC‐BSA‐loaded biomaterial inks of T‐CNF/GGMMA. Depending on the particles’ surface charge, FITC‐BSA showed different release profiles and preserved its stability after release. Lastly, the proof‐of‐concept to deliver large‐sized biological cargo with MSN‐laden nanocomposite biomaterial inks was established via the 3D printing technique.

Funder

Sigrid Juséliuksen Säätiö

Magnus Ehrnroothin Säätiö

Svenska Kulturfonden

Academy of Finland

Varsinais-Suomen Rahasto

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3